Gradio's Journey to 1 Million Monthly Users!
Read MoreGradio's Journey to 1 Million Monthly Users!
Read MoreThis guide will walk you through a Model Context Protocol (MCP) Client and Server implementation with Gradio. You'll build a Gradio Chatbot that uses Anthropic's Claude API to respond to user messages, but also, as an MCP Client, generates images (by connecting to an MCP Server, which is a separate Gradio app).
The Model Context Protocol (MCP) standardizes how applications provide context to LLMs. It allows Claude to interact with external tools, like image generators, file systems, or APIs, etc.
First, install the required packages:
pip install gradio anthropic mcp
Create a .env
file in your project directory and add your Anthropic API key:
ANTHROPIC_API_KEY=your_api_key_here
The server provides tools that Claude can use. In this example, we'll create a server that generates images through a HuggingFace space.
Create a file named gradio_mcp_server.py
:
from mcp.server.fastmcp import FastMCP
import json
import sys
import io
import time
from gradio_client import Client
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='replace')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8', errors='replace')
mcp = FastMCP("huggingface_spaces_image_display")
@mcp.tool()
async def generate_image(prompt: str, width: int = 512, height: int = 512) -> str:
"""Generate an image using SanaSprint model.
Args:
prompt: Text prompt describing the image to generate
width: Image width (default: 512)
height: Image height (default: 512)
"""
client = Client("https://ysharma-sanasprint.hf.space/")
try:
result = client.predict(
prompt,
"0.6B",
0,
True,
width,
height,
4.0,
2,
api_name="/infer"
)
if isinstance(result, list) and len(result) >= 1:
image_data = result[0]
if isinstance(image_data, dict) and "url" in image_data:
return json.dumps({
"type": "image",
"url": image_data["url"],
"message": f"Generated image for prompt: {prompt}"
})
return json.dumps({
"type": "error",
"message": "Failed to generate image"
})
except Exception as e:
return json.dumps({
"type": "error",
"message": f"Error generating image: {str(e)}"
})
if __name__ == "__main__":
mcp.run(transport='stdio')
generate_image
toolNow let's create a Gradio chat interface as MCP Client that connects Claude to our MCP server.
Create a file named app.py
:
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic
from dotenv import load_dotenv
load_dotenv()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
class MCPClientWrapper:
def __init__(self):
self.session = None
self.exit_stack = None
self.anthropic = Anthropic()
self.tools = []
def connect(self, server_path: str) -> str:
return loop.run_until_complete(self._connect(server_path))
async def _connect(self, server_path: str) -> str:
if self.exit_stack:
await self.exit_stack.aclose()
self.exit_stack = AsyncExitStack()
is_python = server_path.endswith('.py')
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_path],
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
)
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
await self.session.initialize()
response = await self.session.list_tools()
self.tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
tool_names = [tool["name"] for tool in self.tools]
return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
if not self.session:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please connect to an MCP server first."}
], gr.Textbox(value="")
new_messages = loop.run_until_complete(self._process_query(message, history))
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
claude_messages = []
for msg in history:
if isinstance(msg, ChatMessage):
role, content = msg.role, msg.content
else:
role, content = msg.get("role"), msg.get("content")
if role in ["user", "assistant", "system"]:
claude_messages.append({"role": role, "content": content})
claude_messages.append({"role": "user", "content": message})
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
result_messages = []
for content in response.content:
if content.type == 'text':
result_messages.append({
"role": "assistant",
"content": content.text
})
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
result_messages.append({
"role": "assistant",
"content": f"I'll use the {tool_name} tool to help answer your question.",
"metadata": {
"title": f"Using tool: {tool_name}",
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
"status": "pending",
"id": f"tool_call_{tool_name}"
}
})
result_messages.append({
"role": "assistant",
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
"metadata": {
"parent_id": f"tool_call_{tool_name}",
"id": f"params_{tool_name}",
"title": "Tool Parameters"
}
})
result = await self.session.call_tool(tool_name, tool_args)
if result_messages and "metadata" in result_messages[-2]:
result_messages[-2]["metadata"]["status"] = "done"
result_messages.append({
"role": "assistant",
"content": "Here are the results from the tool:",
"metadata": {
"title": f"Tool Result for {tool_name}",
"status": "done",
"id": f"result_{tool_name}"
}
})
result_content = result.content
if isinstance(result_content, list):
result_content = "\n".join(str(item) for item in result_content)
try:
result_json = json.loads(result_content)
if isinstance(result_json, dict) and "type" in result_json:
if result_json["type"] == "image" and "url" in result_json:
result_messages.append({
"role": "assistant",
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"image_{tool_name}",
"title": "Generated Image"
}
})
else:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
except:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
next_response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
)
if next_response.content and next_response.content[0].type == 'text':
result_messages.append({
"role": "assistant",
"content": next_response.content[0].text
})
return result_messages
client = MCPClientWrapper()
def gradio_interface():
with gr.Blocks(title="MCP Weather Client") as demo:
gr.Markdown("# MCP Weather Assistant")
gr.Markdown("Connect to your MCP weather server and chat with the assistant")
with gr.Row(equal_height=True):
with gr.Column(scale=4):
server_path = gr.Textbox(
label="Server Script Path",
placeholder="Enter path to server script (e.g., weather.py)",
value="gradio_mcp_server.py"
)
with gr.Column(scale=1):
connect_btn = gr.Button("Connect")
status = gr.Textbox(label="Connection Status", interactive=False)
chatbot = gr.Chatbot(
value=[],
height=500,
type="messages",
show_copy_button=True,
avatar_images=("👤", "🤖")
)
with gr.Row(equal_height=True):
msg = gr.Textbox(
label="Your Question",
placeholder="Ask about weather or alerts (e.g., What's the weather in New York?)",
scale=4
)
clear_btn = gr.Button("Clear Chat", scale=1)
connect_btn.click(client.connect, inputs=server_path, outputs=status)
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: [], None, chatbot)
return demo
if __name__ == "__main__":
if not os.getenv("ANTHROPIC_API_KEY"):
print("Warning: ANTHROPIC_API_KEY not found in environment. Please set it in your .env file.")
interface = gradio_interface()
interface.launch(debug=True)
To run your MCP application:
python app.py
gradio_mcp_server.py
.Now you can chat with Claude and it will be able to generate images based on your descriptions.
Try prompts like:
Claude will recognize these as image generation requests and automatically use the generate_image
tool from your MCP server.
Here's the high-level flow of what happens during a chat session:
generate_image
toolNow that you have a working MCP system, here are some ideas to extend it:
Congratulations! You've successfully built an MCP Client and Server that allows Claude to generate images based on text prompts. This is just the beginning of what you can do with Gradio and MCP. This guide enables you to build complex AI applications that can use Claude or any other powerful LLM to interact with virtually any external tool or service.
Read our other Guide on using Gradio apps as MCP Servers.